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GEOPHYSICAL MODEL OF HOMESTAKE AU

AND SINGER MODEL No. 36b Compiler - W.D. Heran
Geophysically similar models - No. 36a Low Sulfide Au-Quartz Veins

Geologic Setting
 ŽMainly within Archean age regionally metamorphosed (greenschist-facies)
mafic and felsic metavolcanic rocks, komatiites, and volcaniclastic
sediments interlayered with banded iron-formation. Greenstone units
typically intruded by felsic plutons and locally by quartz and/or
syenite porphyry.

 ŽDeposits are common near regional division between predominantly
metavolcanic and metasedimentary rocks in greenstone belt.

 ŽStratabound to stratiform deposit consisting of bedded ores of native
gold with various sulfides in Fe-rich siliceous or carbonate-rich
chemical sediments overlying vein and stockwork feeder zones, often
interlayered with flow rocks. Beds may be cut by quartz-carbonate veins
containing gold. Deposits are commonly structurally controlled.

Geologic Environment Definition
Remote sensing data can delineate regional lineaments, major structural

zones, lithologic boundaries and areas of hydrothermal alteration (Honey and
Daniels, 1985; Crosta and Moore, 1989; Yatabe and others, 1984; Longman,
1984) . Greenstone belts can be outlined by aeromagnetic surveys, which may
reflect a regional magnetic low if the belt is magnetite-deficient, in other
cases a high if it is magnetite-rich (Grant, 1985). Aeromagnetic surveys are
used to define regional structures and locate iron rich metasediments and
mafic and ultramafic volcanic rock, within the greenstone belt (Lindeman,
1984; Boyd, 1984). Airborne magnetic data may also define intrusive at the
edges or within greenstone belts which may be magnetite deficient compared to
normal granitoid rocks (Grant, 1984). Combined airborne EM/magnetic surveys
have been used in mapping structure within greenstone belts (Boa Hera, 1986).
Airborne Radioelement surveys can delineate high potassium zones related to
sericite alteration and help define lithologic boundaries (Cunneen and
Wellman, 1987). Gravity can be utilized to help determine the depth of belt
rocks, define shear zones and folded structures or locate buried intrusive
(Costa and Byron, 1988). Electrical soundings and gravity data have been used
to model maximum depths of greenstone sequences (DeBeer, 1982).

C. Deposit Definition
Detailed magnetic surveys have been used to map banded iron formations;

predict strike extensions, bedding thickness and dip of magnetic zones within
the stratigraphic sequence (Lindeman, 1984) and help unravel structure that
controls mineralization (Pemberton and others, 1985). Also, detailed magnetic
data are employed to map intrusive and dikes associated with ore zones
(Koulomzine and Brossard, 1947) and identify alteration which involves both
the formation and destruction of magnetic minerals (Fuchter and others, 1991).
The strong association of gold with sulfides has permitted the use of a
variety of electromagnetic methods to map these zones as conductors (Lindeman,
1984; Valliant, 1985; Costa and Byron, 1988. EM techniques are also used to
help map stratigraphy and structure (Pemberton and Carriere, 1985). The
induced polarization method is effective in mapping sulfides as resistivity
lows and as positive zones of increased polarization (Mathisrud and Sumner,
1967; Sheehan and Valliant, 1985; Hallof, 1985). The IP method can be used to
distinguish between mineralized and non-mineralized conductive (EM) anomalies
(Costa, and Byron, 1988). IP has been used successfully underground to map
pencil-like ore shoots (Mathisrud, and Sumner, 1967). The Mise-a-la-masse
electrical technique has been used to delineate the size, shape, and position
of individual mineralized units within a sequence (Polomé, 1989). Radiometric
surveys can also be used to define areas of hydrothermal alteration (Costa and
Byron, 1988).
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Shape

layered sheet

irregular

Deposit

D.

E.

1.

2.

3.

4.

5.

6.

7.

8.

F.

Average Size/RangeSize and Shape of

or lens 0.3x106m3, .03-3.9x10 6m3Deposit

Alteration

Alteration

Physical Properties Host
(units)

*Density
(gm/cc)

3.1(1); average
2.9-3.4 (1)

?

Porosity ? ? *

Susceptibility
(l0-6 cgs)

500(1) average
0-5000(1)

*

? *Remanence ?

? *1(1) average
● 1-10(1)

Resistivity
(ohm-m )

IP Effect
chargeability
(mv-sec/v)
percent freq.
effect (PFE)

50(1) average
20-200(1)

12.5(1) ave
5-50(1)

? *

? *

*Seismic Velocity
(km/sec )

? ?

Radiometric

moderate-highK (%) moderate-high *

*moderate-very highU (ppm) variable

variable *Th (ppm) variable

Remote Sensing Characteristics
Remote sensing applications to exploration are based on identifying

indirect indicators of potential host rocks including spectral, albedo, and
textural characteristics. Potential host rocks composed of iron oxides and
carbonate minerals can be uniquely identified with high spectral resolution
instruments (imaging spectrometers) in the visible and near-infrared (Rowan
and others, 1983; Clark and others, 1990). More importantly, imaging
spectrometer data can be used to identify and map the distribution of specific
iron oxide species (Taranik and others, 1991). Broad-band data in the visible
and near-infrared, such as Landsat Thematic Mapper, are effective for
separating carbonate- and iron oxide-bearing potential host rocks from other
lithologies on regional and local scales (Knepper, 1989). Enhanced Landsat
data have been used to define lineaments, fracture patterns and major
structures (Longman, 1984). Airborne MSS data can delineate faults, joints
and stratigraphic units (Honey and Daniels, 1985).

G. Comments
Regional exploration for and within greenstone terranes has commonly

employed aeromagnetic data and more recently Radioelement and remotely sensed
data, in Australia, Canada, and Brazil. In general, greenstone terranes have
a lOW and rough magnetic character, meaning a low background level with
numerous intense short-wavelength anomalies (Grant, 1985).
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Figure 3. Laboratory physical property measurements on core samples from the
Homestake Mine (from Mathisrud and Sumner, 1967).
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